Weighted Boundedness of Maximal Functions and Fractional Bergman Operators

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundedness and compactness of weighted composition operators between weighted Bergman spaces

We study when a weighted composition operator acting between different weighted Bergman spaces is bounded, resp. compact.

متن کامل

Weighted composition operators on weighted Bergman spaces and weighted Bloch spaces

In this paper, we characterize the bonudedness and compactness of weighted composition operators from weighted Bergman spaces to weighted Bloch spaces. Also, we investigate weighted composition operators on weighted Bergman spaces and extend the obtained results in the unit ball of $mathbb{C}^n$.

متن کامل

Operators on weighted Bergman spaces

Let ρ : (0, 1] → R+ be a weight function and let X be a complex Banach space. We denote by A1,ρ(D) the space of analytic functions in the disc D such that ∫ D |f(z)|ρ(1 − |z|)dA(z) < ∞ and by Blochρ(X) the space of analytic functions in the disc D with values in X such that sup|z|<1 1−|z| ρ(1−|z|)‖F ′(z)‖ < ∞. We prove that, under certain assumptions on the weight, the space of bounded operator...

متن کامل

A Note on the Boundedness of Operators on Weighted Bergman Spaces

Let ρ be a weight function, let X be a complex Banach space and let Bρ denote the space of analytic functions in the disc D such that R 1 0 ρ(1 − r)M1(f ′, r) dr < ∞, we prove that, under certain assumptions on the weight, the space of bounded operators L(Bρ,X) is isometrically isomorphic to the space Λρ(X) of X-valued analytic functions such that ‖F ′(z)‖ = O ρ(1−|z|) 1−|z| . Several applicati...

متن کامل

Toeplitz Operators and Weighted Bergman Kernels

For a smoothly bounded strictly pseudoconvex domain, we describe the boundary singularity of weighted Bergman kernels with respect to weights behaving like a power (possibly fractional) of a defining function, and, more generally, of the reproducing kernels of Sobolev spaces of holomorphic functions of any real order. This generalizes the classical result of Fefferman for the unweighted Bergman...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Journal of Geometric Analysis

سال: 2017

ISSN: 1050-6926,1559-002X

DOI: 10.1007/s12220-017-9881-5